
About QED Software

QED Software (www.qed.pl) is an AI

products company and a technological

enablement partner for firms that are

pioneers in various areas. We turn

applied AI research into production-

ready solutions, and we have the

expertise to embed them into large

software frameworks.

Our products are used to reduce the

uncertainty of Machine Learning (ML)

processes, to align ML with business

priorities, to support humans in the ML

loop and also to reduce the ML

footprint in intensive data

environments.

Our qualifications extend beyond solely

ML to the broad AI fields of simulations,

intelligent agents, approximate

reasoning, and whatever comes next.

This is why we can address a truly wide

range of applications, from

cybersecurity to entertainment, from BI

to computer vision, and more.

delivered by

Our Approach to Truly

Advanced Intelligent

Behaviors in Games

Introduction

At QED Software we build advanced Artificial Intelligence.

Our position at the intersection of academia and business allows us

to identify opportunities for applying the latest achievements

of science and technology and push the boundaries of innovation.

One such area is enhancing business productivity by applying AI

to video games. Indeed, truly advanced AI makes it possible

to dramatically improve the experience for both players and game

developers.

On the one hand, the improved gaming experience for the player adds

to the overall success of the product; on the other hand, a faster, more

error-resilient game development cycle allows for achieving quicker

and cheaper time-to-market rates for new game products.

file:///C:/Users/Marta%20Nielek/Desktop/Grail/White%20paper/www.qed.pl

.

2

Contents

Introduction ... 1

1. What Do We Mean by Truly Advanced AI in Games? .. 3

2. How Our System Works .. 4

3. Advanced Intelligent Behaviors in Grail – a Paradigm Shift ... 5

4. Modularity, Communication and Hierarchy – Practical Aspects of Development 6

4.1. Communication & Hierarchy .. 6

5. How Can Grail Help Game Developers? .. 7

6. How Can Grail Help Game Development Management? .. 12

7. Why Do We Need Truly Advanced AI in Games? ... 12

8. What Makes Games Built with Grail Better Value for Players? ... 14

9. Core Technical Contribution .. 14

9.1. Utility-Based AI.. 15

9.1.1. Grail Implementation .. 16

9.2. Simulated Games AI ... 17

9.2.1. Grail Implementation .. 18

9.3. Planner AI .. 19

9.3.1. Grail Implementation .. 20

9.3.2. Performance Considerations .. 21

9.4. Evolutionary Optimizable Scripts .. 22

9.4.1. Grail Implementation .. 22

9.5. Grail Integration with External Algorithms ... 24

9.6. What Type of Games Would Benefit Most From Which Grail Techniques? 26

10. Grail Roadmap ... 27

11. You Are in a Good Company: the History of Applying Advanced AI in Video Games 28

12. Games as a Sandbox for Developing Cutting-Edge Decision-Making AI ... 30

References .. 32

.

3

1. What Do We Mean by Truly Advanced AI in Games?

The ultimate goal, the holy grail, of game development is to create

the experience of believability and immersion for the human player. This is

achieved through a wide range of techniques that pertain to the key aspects

of game-playing: story, graphical fidelity, animations, music and sound effects,

and voice acting, just to name a few. A big role in this mix is AI-controlled

Non-Player Characters (NPCs, bots, or agents), that when poorly implemented,

can break the immersion and impair user experience. The key is to design

intelligent decision-making entities that will produce desired behaviors

in complex virtual environments.

Typically, agent behaviors are implemented using branched conditional

statements, forming so-called behavior trees. A behavior tree represents

the reasoning process behind choosing a behavior. Behavior trees are great

for simple AI-controlled agents. In more complex games, however, they tend

to seem insufficient: they are hand-crafted, thus the game designer has

to anticipate everything, and they encode lots of arbitrarily chosen conditions

so are difficult to modify when the game changes. Behavior trees do not scale

well with the game and they can grow very large. This all makes them hard

to manage.

Nowadays, behavior trees are not really enough. We need to boost agents’

perception, memory, and decision-making skills using truly advanced AI. To this

end, we should leverage more refined techniques that are available to us thanks

to scientific research. QED Software proposes a disruptive innovation to the

standard decision-making AI technologies used in game development.

.

4

Our powerful tool, Grail, enables game developers to create advanced

and nuanced intelligent behaviors and, at the same time, simplifies

the development process. Importantly, there is no need to compromise

between high quality AI and development ease. On the contrary – the paradigm

shift that we propose provides better results for the end user (player) and

at the same time facilitates the development process. This is science-fueled

innovation in its purest form.

2. How Our System Works

Grail is an AI middleware for game development. You can think of it as a chip,

implant, or plugin, that contains refined yet approachable AI techniques

for implementing Advanced Intelligent Behaviors. Grail consists of a C++ code

library , a C# library, and dedicated connectors for each of the two popular

game engines: Unity and Unreal. As such, Grail can be plugged into any game

development environment that interfaces with those two programming

languages. In addition to the code and the plugins, we provide tools with

a graphical user interface that can be used for configuration and debugging

without the need for coding and recompiling of the game.

As a tool primarily used by game developers and quality assurance engineers,

Grail provides two intuitive interfaces: a graphical user interface (GUI) and

a programming interface of choice (C++ or C#).

.

5

There are two main Grail use cases. One is AI configuration during game

creation, which can be achieved using the GUI and/or the programming

interface. The other is live game AI debugging using the GUI.

Depending on the need, there are a few modes of working with Grail to choose

from: using only the programming interface, using only the GUI, or using both.

The most common modes are given in the table.

3. Advanced Intelligent Behaviors in Grail – a Paradigm Shift

Unlike traditional approaches based on behavior trees or finite state machines,

where the game developer explicitly declares what an intelligent entity should

do under certain conditions, in Grail, the underpinning idea is to equip the entity

with options and let a reasoning mechanism choose one of them at a particular

moment. Due to the way a behavior is assessed in Grail (e.g. using mathematical

curves instead of or in addition to conditional statements), agents behave

meaningfully even in situations that the programmer/designer did not

anticipate, even if the AI has to take many different factors into account.

For example, available behaviors are given a score, and the next behavior

is selected based on that score. An intelligent agent chooses the behavior that

is most useful in a given place and moment. Still, legacy behavior tree-based

agents can be smoothly integrated with Grail-based agents.

In technical terms, a behavior is an abstraction of an action an agent may take.

Such action is an atomic piece of execution logic. A behavior may be as simple

as changing a value of some variable or it can also be as complex as moving

an army of units from one place to another. What is important is that the agent

Modes of working with Grail
(components used)

Game language

(or language interface)
Game engine

C++ library C++ any

C++ library + GUI tools C++ any

C++ library + UE plugin C++ Unreal Engine

C++ library + UE plugin + GUI tools C++ Unreal Engine

C# library C# any

C# library + GUI tools C# any

C# library + U3D plugin C# Unity3D

C# library + U3D plugin + GUI tools C# Unity3D

Grail creators have been using Grail
heavily since early development stages
to implement advanced intelligent
behaviors in Tactical Troops: Anthracite
Shift, a game that was published in
2021.

.

6

will choose a behavior over some other candidate behaviors. But how?

A component called a reasoner (the “brain” of an intelligent agent) is responsible

for intelligent behavior selection. This is the heart of Grail, where truly advanced

AI technologies for intelligent behavior selection are implemented: Utility-

Based AI, Simulated Games AI, Planner AI and Evolutionary Optimizable

Scripts. Utility-Based AI is just one technique. Simulated Games AI is an example

of another technique (implementing a Monte Carlo Tree Search algorithm),

a technique of choice for combinatorial games, which has not often been applied

in video games due to the high complexity and memory consumption.

Our original adaptation of this technique to the specifics of video games in Grail

aims to change this. Planner AI allows for a very flexible definition of actions

using all the mechanisms of the chosen programming language: nested

conditionals, loops, arithmetic operations, and a wide range of tools that are

not typically available in off-the-shelf planning algorithms. The full power

of Grail comes from the ability to combine several advanced AI techniques

to equip artificial agents with truly Advanced Intelligent Behaviors1.

4. Modularity, Communication and Hierarchy – Practical Aspects

of Development

Grail has been designed and built by AI scientists, software engineers, and game

developers, paying special attention to ease of use. Grail facilitates

implementation of intelligent entities, communication between them,

knowledge transfer (via shared blackboards), as well as logging and serialization.

Thus, Grail is also a framework for creating multi-agent systems. Architecture-

wise, our system consists of four main components:

AI Manager, which takes care of registered entities and shared blackboards. It is

responsible for Grail’s threading and update loop, which controls the order

in which agents take actions. It provides sort and group entities features.

AI Entity: an AI-controlled agent is a basic object that can execute behaviors.

Behaviors might be provided by the user via a setter or by an assigned reasoner.

An AI Entity may correspond to a physical character in the game, such as

a soldier in a shooter game, but it can also be virtual without any visible in-game

manifestation. An AI Entity can choose one behavior at a given moment among

one or more possible behaviors.

Reasoner is responsible for decision-making and assigning selected behavior

to AI-controlled entities. It is possible to provide a custom implementation of

the reasoner (e.g. behavior tree-based) or use one of the specific reasoners

available in Grail.

.

7

Grail provides a built-in mechanism for exchanging data between entities based

on Blackboards. Each entity manages one private Blackboard and may share any

number of Blackboards with others.

An AI-controlled agent can be built in a hierarchical and component manner.

It can consist of any number of components responsible for different aspects

of behavior and arranged in any hierarchy, e.g.:

• high-level brain (strategy), arms (shooting) and legs (moving);

• minister (resource management), general (strategy), captain (squad

tactics), unit (move, attack).

The system is flexible: you can, but you don't have to, create a hierarchy.

Implementing AI hierarchy in Grail using Blackboard Architecture

5. How Can Grail Help Game Developers?

Grail enables developers to use sophisticated AI in implementing truly Advanced

Intelligent Behaviors for AI-controlled bots. It has been designed and used by

game developers with the following requirements in mind:

• Ease of modification during development. Almost at any time in the

game, it is possible to replace the AI – either the entire bot

or its individual components.

• Short time from making a change to seeing its result. Rich AI

configuration options are available from the level of text files (as well

as from the level of attached graphic tools) and do not require code

compilation.

Grail has been designed and used by
game developers.

Architecture How Blackboard
Facilitates Code Reusability

Using blackboards as a method
of communication between agents
allows for an easy replacement
of individual character control
modules, which in turn facilitates
the reuse of the code by many types of
opponents and further reduces
programming time.
For example, in the Tactical Troops:
Anthracite Shift game, there are three
bot layers: strategic, tactical,
and units. First, using Utility AI,
the strategic layer selects high-level
goals for each unit and puts it
on a shared board. Then the tactical
layer, after reading the board,
constructs an adequate simplified
game model and conducts MCTS
simulations on it. The same bot
configuration controls enemy groups
trying to hunt down and kill a specific
NPC, only the strategic layer here
is replaced by a simple script writing
to the same shared board.
This excludes the tactical layer from
taking any action; it only expects
a preserved communication protocol
(i.e. the orders must be on the board,
and it does not matter who delivers
them).

4.1. Communication & Hierarchy

.

8

• A complete AI framework combined with a graphical configuration

and debugging tool significantly reduces the amount of work required

to obtain high quality AI in games.

• Facilitate code reuse via blackboards. Grail uses blackboards (local and

shared) to model agent knowledge and the method of its exchange.

The use of blackboard as a method of communication between agents

allows for easy replacement of individual character control modules,

facilitating the reuse of the same code by many types of opponents,

which further reduces programming time.

• Lightweight. Can run on a severely limited CPU budget.

• Flexibility. Our framework does not make any hard assumptions about

the decision-making algorithms used by AI-controlled bots. If necessary,

the developer can easily integrate his or her own techniques

(or techniques from other libraries) by implementing a custom reasoner.

The library supports the construction of AI in such a way that it has

a range of behaviors that are dynamically selected at a given moment

in accordance with the adopted game model, and the creator of the game

does not directly program what the bot is supposed to do. The latter

is also possible (if necessary), but is not the main way to work with

the tool.

.

9

.

10

.

11

.

12

6. How Can Grail Help Game Development Management?

Teams that use Grail for AI development and quality assurance can benefit from

the above-mentioned flexibility, ease of modification, and quick turnaround.

They can implement smarter behaviors more quickly, as compared to legacy

techniques. At the same time, Grail can be well integrated with other techniques,

ensuring backward compatibility with all legacy code. Importantly, a faster

and more-robust-to-errors development cycle allows teams to iterate with more

ideas and leads to tightening up that agile sprint.

Great research does cost. Grail is the result of a several-year-long R&D program

that QED Software carried out to build a tool for non-experts to enable them

to create expert AI in a game. Thus, Grail provides game development teams

a way to benefit from the most important scientific achievements in creating the

product, without the need to repeat the same research, without the cost

of recruiting a team of AI experts, and without the costs of maintaining them.

Grail provides GUI tools for configuring AI (AI Entity Configurator and Utility

Configurator) as well as debugging AI (Utility Debugger, Planner Debugger,

Simulated Games Debugger). Moreover, our plugins add very simple GUIs

to the Unity and Unreal game engines: to view debug files, load data from

configuration files created in Grail, display basic debug data, such as the actions

currently performed by agents, etc.

Grail’s intuitive GUI tools can speed up teams’ work in areas such as:

• AI configuration & debugging;

• flexible, easy-to-use Utility-Based AI;

• MCTS for solving complex adversarial games;

• goal driven behavior using planners;

• coordination of AI agents in challenging situations;

• complex AI behavior achieved by combining multiple algorithms;

• world state knowledge management using blackboards;

• easy integration of third-party reasoning algorithms.

7. Why Do We Need Truly Advanced AI in Games?

It will always be about believability and immersion. The goal of advanced

intelligent behaviors in games is to create a world where the human player will

have the best entertainment. What are the aspects of believability

and immersion where great decision-making AI is pivotal?

Non-cheating AI. Especially AI that is not omniscient. Computer players should

not have access to information a human player would not have in an equivalent

situation. They should play according to the same rules. This is especially

important in RPG games, strategy games, and all multiplayer games with bots:

Grail is the result of a several-year-long

R&D program that QED Software carried

out to build a tool for non-experts

to enable them to create expert AI in

a game.

.

13

• NPCs should not spawn out of nowhere (see the example of Cyberpunk

police);

• computer players should not start with more resources, e.g. a prebuilt

base in a strategy game.

Realistic skills of computer agents related to who they are. For example,

a soldier that has perfect aim because a computer can calculate ballistics

perfectly, is not believable and breaks immersion. On the other hand, a powerful

archmage in an RPG game may be superhuman when it comes to skills.

It must be appropriate.

This is a common issue – living creatures should not be able to calculate

something in a computer-like style.

Ability of NPCs to adapt to a given situation:

• including the ability to react to player actions;

• avoids repetition of the same pattern all the time.

How difficulty is implemented. For example:

• enemies who are inadequately hard to beat will not be perceived

as believable;

• difficulty scaling should not be implemented by making opponents deal

more damage with the same weapon or gather more resources

per second. This is not believable. Instead, they should be more intelligent,

use more sophisticated strategies, tricks, etc.;

• being too strong or too weak (related to the level of intelligence the player

expects from a virtual character) usually breaks immersion.

Realistic senses of computer agents (perception, hearing, memory). Whether

they can hear and see in a similar fashion to living creatures.

• For example, police officers should not chase you if you did something

wrong completely unnoticed when nobody was around.

• Remembering facts you told NPCs and referring to them in future

conversations.

Using “all senses” in a consistent fashion. For example, attacking and shouting

“charge”, or running away and being silent, being scared, and sweating.

The ability to combine behaviors, e.g. talking, walking through the room, looking

through the window.

Feel that computer agents try to accomplish goals we expect them to pursue.

A soldier, a businesswoman, an alien, a dog – each of these entities may have

various goals, and we as humans intuitively know which of them are believable.

Learning and reasoning. NPCs should learn from mistakes. They should also

be able to draw conclusions based on what they observe.

NPCs showing emotions, e.g. expressing gratitude to the main character,

or healing a wounded ally in a battle. Also, computer players may be “ruthless”

.

14

in non-human ways in their actions. For example, if the computer player needs

to kill one opponent unit to win, they may even shoot through an ally soldier

(who happens to be in the line-of-sight) and kill them too, because the computer

player knows it will win anyway.

This is non-human-like behavior that breaks immersion.

Various personas. NPCs with distinct personalities make for a more believable

game compared to a game in which all NPCs are similar.

Smooth behaviors. NPCs are more believable if they are persistent in their

behaviors. Think of a pathfinding algorithm from A to B. Going along a smooth

line is more believable than zigzagging, even if a distance metric is defined

in such a way that both paths have equal length. This thinking

can be extrapolated onto general behavior of computer bots. Going back

and forth between two states is not believable.

8. What Makes Games Built with Grail Better Value for Players?

With Grail, AI behaves less schematically, because the developer does not

define behavior in the form of rules such as “If you have hp <50, hide”, etc.

Opponents use advanced tactics (flanking, setting ambushes, etc.), thanks

to ability to simulate enemy movements (MCTS).

Strong, interesting opponents in combinatorial games (e.g. in card games).

An NPC capable of carrying out long sequences of actions and achieving long-

term goals (through the use of a planner) appears more intelligent and “alive.”

9. Core Technical Contribution

AI in games in general can be understood broadly as a collection of methods

pertaining to steering, navigation, perception and memory modeling,

and decision-making. Grail is centered on decision-making (in version 1.0)

as well as perception and memory modeling (in upcoming version 2.0).

Below are the details of Grail reasoners and their intended usage scenarios:

Utility-Based AI, Simulated Games AI, Planner AI, and Evolutionary Optimizable

Scripts.

.

15

9.1. Utility-Based AI

Utility-Based AI is a method of assigning scores to behaviors based on some

heuristic, usually involving curves. Then the algorithm analyzes those scores

and chooses the most suitable behavior.

The concept of modelling behavior with utility scoring originates

from economics and psychological science. It has laid the foundations of what

became known as utility theory for game AI2. In the context of games, there are

many names for this theory used interchangeably, such as utility system,

utility-based AI or just utility AI. Utility-based AI has also become popular3

thanks to its advantages such as scalability, extendibility, and ease of design.

The main premise is that intelligent entities choose what to do based

on the perceived utility of each action. In the context of game AI, each action

is associated with so-called utility curves (also referred to as response curves)

that define relationships between decision factors in the game and measures

of the action being appealing for the agent. Such a factor is called

a consideration.

The figures on the left depict two sample curves defined for the action of looking

for a med-kit in a shooter game. There is no limit to the types of curves that

can be used. All of the membership functions commonly used in fuzzy logic

are useful here as well. It is often said that utility-based AI provides

a fuzzy-logic-quality compared to case-based scripted approaches such as

behavior trees.

What is new, compared to many traditional techniques such as behavior trees

or finite state machines, is that you can focus on defining the decision factors

one by one and their interplay is an emergent behavior provided by

the utility-based AI. This way, you can avoid combinatorial explosion

and spaghetti code, which we often end up with when trying to combine

all decision factors within a single script.

Intelligent entities choose what to do

based on the perceived utility of each

action.

.

16

The results from processing utility curves defined for the same action but

for various considerations are combined into one score that becomes the final

perceived utility of the action. This process is performed by the so-called

evaluator in the utility-based AI. There are many ways of performing such

an aggregation of scores, as they are many ways to model a particular game

using utility-based AI.

Finally, an action is chosen based on the utility values of all actions.

This operation is performed by the so-called selector. Depending on

the particular game and scenario, the agent may use various selectors. The most

common options are (1) choosing the action with the highest utility score,

(2) pseudo-roulette wheel selection, or (3) choosing a random action among

a few top-scored actions.

9.1.1. Grail Implementation

Commonly, utility systems evaluate and select only a behavior type, which

is next parametrized with heuristically chosen data.

Example 1:

Behavior types: attack or stay idle.

Characters:

• AI character;

• troll - strong and far from AI character;

• goblin - weak and close to AI character.

Let’s assume that the AI character has selected the attack action. It is now

determined that the AI character should attack the goblin because of

a user-provided heuristic that the closest enemy should be attacked first.

Behavior Instantiation in Grail makes action selection much more clever.

The utility-based AI reasoner allows users to evaluate and select contexts –

abstract data that allows you to instantiate proper instances of a demanded

behavior.

Example 2:

Considering behavior types and characters from Example 1, let’s instantiate

all behaviors. Thus, a list of all behaviors appears as follows:

• attack(troll);

• attack(goblin);

• stay idle.

Each attack behavior can be evaluated independently giving users more conflict

resolving abilities during action selection. If we provide the reasoner with curves

indicating that the character should attack closer enemies, attack(goblin) will be

.

17

selected. However, if the curves indicate that stronger enemies should

be attacked with priority, the reasoner will select attack (troll).

Persistence is an optional reasoner parameter determining a score bonus for

the currently executed behavior. The purpose of persistence is to allow you

to force entities to swap behaviors only if new behavior options are significantly

better than the current one, to prevent erratic behavior.

Operation stack. While using Grail’s Utility-Based AI, suspended behaviors

are put on top of the stack and can be retrieved later, if they are still legal.

Behaviors from the stack also get a persistence bonus to their score.

9.2. Simulated Games AI

Grail’s Simulated Games AI implements a Monte Carlo Tree Search (MCTS)

algorithm. MCTS is a state-of-the-art technique for implementing AI

in combinatorial games. It is a simulation-based technique and, as such,

it requires a model that can simulate a game that includes:

• determining all possible actions in a given state;

• applying the effects of actions that result in a new state (frame update);

• making sure that equal actions applied in an equal state result in the same

state;

• determining whether the game is finished (termination condition);

• determining a numerical outcome of the game.

MCTS builds the so-called game tree iteratively. In such a tree, nodes represent

possible game states, whereas edges correspond to possible transitions

between states. Both nodes and edges may contain additional data associated

with states and actions, respectively. Although it is said that a game tree

is searched and not constructed (because the tree is an abstraction that already

exists as a defined mathematical model) we will use the verb ‘construct’

in relation to the game tree to express the process of building the data structure

in a computer memory. The idea is to learn how to play the game in the most

effective way by gathering statistical evidence through simulations.

The algorithm contains a formula that balances the exploitation vs. exploration

trade-off. Think of a player – e.g. a chess grandmaster – that can think for

a certain time and play virtual games in their mind before making the actual

move in the real game. In such hypothetical games, they may check the most

promising moves in more depth (exploitation) and test various new promising

moves (exploration). MCTS does exactly that before recommending the actual

action to make in the game.

Each simulation iteration uses the knowledge gathered so far and consists

of four phases: selection, expansion, simulation, and backpropagation.

The idea is to learn how to play the

game in the most effective way by

gathering statistical evidence through

simulations.

.

18

MCTS scales better than traditional game-tree search algorithms such as

alpha-beta. As it relies on the real outcome of the game, it is more robust

and asymptotically converges to perfect play with respect to the given goal.

Other game-tree search algorithms are breadth-first and cannot be applied

without a heuristic evaluation function in non-trivial games. Despite being

the technique of choice for combinatorial games, MCTS has not often been

applied in video games. Grail aims to change this by adapting this technique

to the nature of video games.

9.2.1. Grail Implementation

Grail’s Simulated Games AI implements an MCTS algorithm in its core.

The approach is based on simulations of certain simplified games within your

game. Such a simplified game can, for instance, be the strategy layer in a 4X

strategy game.

We made certain aspects of MCTS easier to manage and we introduced a few

modifications4.

1. The game state is not stored in the tree. In the MCTS algorithm, the state

of the game is usually stored explicitly in tree nodes. This can hamper video

games due to huge, unpredictable memory usage.

2. We do not require any complex definition of a state in the game and,

in particular, we do not require the implementation of a state comparison

function, which may be inefficient for large game states.

3. Instead, we use intuitive interfaces for units in the game. You define

available actions for the units, their reset procedure (when the simulation

starts from the current state again), and their team alignment. Units that

share a team alignment are considered by the MCTS to be working towards

the same goal.

4. There are two interfaces for units – ThinkingUnit and StochasticUnit.

The ThinkingUnit will perform actions according to the MCTS exploration

We made certain aspects of MCTS

easier to manage and we introduced

a few modifications.

.

19

vs. exploitation paradigm. The StochasticUnit will perform actions randomly

using the provided random distribution.

5. You define the results of actions and which unit goes next.

6. However, we require actions to have repeatable deterministic effects in

a given state. Randomness is still totally possible, but the StochasticUnit

must perform random actions and for each random outcome a separate

action needs to be defined. For example, the StochasticUnit may roll

a 6-sided die by having 6 available actions. They will be chosen randomly

instead of ‘intelligently’ because of how StochasticUnits work.

7. It is possible to have both discrete and continuous actions. The former have

immediate results, whereas the latter can have delayed results. Both are

possible in Grail, which is shown in the documentation.

8. Each unit can be assigned a heuristic reasoner that, based on the state

in the simulation, may choose an action heuristically instead of the one

proposed by the MCTS.

This way, it is easy to introduce expert knowledge or scripted behavior precisely

where we want to. In other situations, the unit will still be simulated in the spirit

of the MCTS.

9.3. Planner AI

Planning is a branch of AI research concerned with finding appropriate

sequences of actions needed to achieve stated goals given an initial world state.

The action sequences leading to that goal are called plans. The role of planning

algorithms is to find the optimal plan according to hard-coded or user-provided

requirements. This might mean finding the shortest sequence of actions, but

it might also be necessary to minimize a more abstract action execution cost

metric.

All planning algorithms require the concept of a state (or world state). The world

state contains all information needed to determine if a given action may be

performed.

Another key concept of planning algorithms is action. An action is represented

by a list of preconditions and a list of effects. Preconditions determine whether

the action can be executed, given a world state. Effects define world state

transformations applied after choosing the action.

Planner goals are defined as a set of conditions, in a way similar to action

preconditions. Whenever the planner stumbles upon a state that satisfies all

of the conditions, the best plan leading to this state is returned. The set

of all possible states is called a state space. In any state there can be (and usually

there is) more than one action available.

The role of planning algorithms is to

find the optimal plan according to

hard-coded or user-provided

requirements.

.

20

9.3.1. Grail Implementation

In planning algorithms, states are typically modeled as sets of Boolean variables

corresponding to certain facts about the world, for example:

present(crane, room_1) = true

adjacent(room_1, room_2) = true

We found such representation to be too limiting in the context of video games,

so we designed our own way to describe states.

Parameterized Object. In Grail Planner AI, the basic world state building block

is a Parameterized Object. Parameterized Objects are containers for arbitrary

data types, with entries identified by string keys (they’re very similar to

Blackboards in this regard). Additionally, Parameterized Objects can hold

multiple collections of unsigned integers. They are used mostly to represent

references to World Objects (to model an inventory, connections between

rooms, etc.).

World Object is a special type of Parameterized Object, representing an entity

that can be subject to various actions. Each World Object is characterized by

its type, such as “monster,” “potion,” “room” (World Object types also support

multiple inheritance), and a unique reference id.

World State. In Grail, the World State is a container for all existing World

Objects. Additionally, it is also a Parameterized Object, giving you the ability to

describe state variables that are not part of any World Object. Typically, you will

have to create only the initial World State and the planning algorithm will carry

on from there.

Representing Actions. To tell the planner what it can do, we have to define a set

of objects called action templates. An action template contains a name,

an argument list, action preconditions, effects, and cost computation logic.

Action logic as functions. Preconditions, effects, and cost computation are

modeled as user-provided functions written in a programming language (instead

of using a special description language, as is usually done), allowing for a very

flexible definition of actions. Thanks to this approach you can use all

the mechanisms of your chosen programming language inside action logic:

nested conditionals, loops, arithmetic operations, and all sorts of stuff that’s not

typically possible in planning algorithms. For example, you can procedurally

compute an action cost, depending on the World State. You can apply variants

of action effects, based on various parameters like health, fatigue etc.,

unrestricted by typical limitations of planning domain description languages.

Goal representation. In Grail, planner goals are simply represented as collections

of functions with bool return type. As with actions, this approach allows for very

flexible goal definitions. Why not just a single function? If you define your goal

as a list of subgoals, it’s much easier to come up with a sensible planner heuristic

You can use all the mechanisms of

your chosen programming language

inside action logic.

.

21

– you may use Hamming distance between the current state and the goal

or penalize unsatisfied goal conditions in a different way.

9.3.2. Performance Considerations

Planning can be really computationally demanding, and to make its use practical

in video games, we certainly don’t want to take too much CPU time when

computing the plan. To address this issue, Grali’s Planner AI works in an iterative

manner – this means that you can easily spread the computation over multiple

frames.

Max depth. You can significantly improve computational complexity of your

planning problem by limiting maximum search depth or – in other words –

maximum plan length. In most video games, there will be no need to consider

plans longer than a few actions, and setting a reasonable depth limit will cost

you nothing while drastically shrinking the search space graph.

Max plan cost. Another way to limit search depth is to limit maximum total plan

cost. This way you can still obtain long sequences of cheap actions while still

getting some performance boost, especially in domains with large action cost

disparities.

Max iteration count. Sometimes finding a plan is simply not possible and there’s

no point searching the state space on and on. Grail’s Planner AI gives you

the option to limit the maximum iteration count after which planning will be

considered a failure.

.

22

9.4. Evolutionary Optimizable Scripts

The evolutionary algorithm (EA) is a representative of the evolutionary

computation family that encompasses algorithms such as genetic algorithms,

genetic programming, differential evolution, evolution strategies, memetic

algorithms, and several others. The evolutionary computation is part of the

so-called Computational Intelligence (CI). In general, most techniques

in computer science that are referred to as “intelligent’’ fall into either

Computational Intelligence, Machine Learning, or Artificial Intelligence.

Evolutionary algorithms are population-based. Each individual in the population,

also termed a phenotype, encodes a specific candidate solution to the given

optimization problem.

Their idea has been inspired by nature – how natural organisms evolve over

many generations. The standard EA is inspired by Darwinian natural selection;

however, there are also variants that draw inspiration from Lamarckian

evolutionary theory.

At the start, the initial population usually consists of random solutions, possibly

even invalid or poor quality ones. The idea is to employ the survival of the fittest

process to “breed” new solutions until an acceptable one is found (or we run out

of time). This is done using selection pressure and genetic operators.

The selection, as the name implies, selects the best individuals from the current

generation to survive to the next generation based on their fitness computed by

the so-called fitness function, which is typically provided by the programmers.

The standard genetic operators are crossover and mutation. Crossover

is the way parent solutions are combined to create a child solution. Mutation

affects a chromosome of an individual to maintain genetic diversity. Mutation

is usually applied with a small probability for each chromosome.

However, there are both numerous variants of particular evolutionary operators

(mutation, crossover, and selection) as well as various strategies and heuristics

used. EAs can be used instead or together with machine learning. Examples

of the latter case include using EAs to optimize the weights of neural networks,

or evolving neural networks (e.g. the NEAT method – NeuroEvolution

of Augmenting Topologies).

There are many articles that analyze the advantages of EAs. For instance, they

can be applied to non-differentiable problems. They can avoid local optima more

easily than gradient-based methods. Because the whole population undergoes

the process, trends can be observed and the best solutions, if shared by many

individuals in the population, tend to be more stable. Finally, EAs are an ideal

method to which parallel computing can be applied.

9.4.1. Grail Implementation

Grail comes with implementation of a highly configurable evolutionary

algorithm. It is designed to optimize what we call “EvoScripts”.

EAs can avoid local optima more easily

than gradient-based methods.

Because the whole population

undergoes the process, trends can be

observed and the best solutions,

if shared by many individuals

in the population, tend to be more

stable.

.

23

Anything can subclass the EvoScript and become immediately optimizable by

our EA. You choose which parameters are optimizable using a very

straightforward interface.

Instead of writing:

int minimumHp = 2;

if(HP > minimumHp)

 // do something

You will write:

The value of “2” is the initial value, but you can provide the domain of

the available values for your parameter.

For the evaluation – the survival of the fittest process – described

in the theoretical introduction, we introduce the so-called Arena.

Arena is an interface for you to implement that will serve as a battle between

EvoScripts. The goal of it is to assign a score (the higher the better) that denotes

how good each EvoScript is. In Arena, you will typically start your game, provide

the starting state (scenario), run it, and then assign a score to each participant.

We provide helpers for a tournament-style contest, e.g. how many points/frags

a player represented by an EvoScript gets. However, if you have a custom

scenario – for example you do not want to optimize the players but the game,

you may ignore it and just provide the function that will assess the quality of the

current settings.

Another example: you may create an AI that can play a puzzle game.

Then the arena may use such a player and test how much time it takes for it

to solve the game. If the parameters of the puzzles are represented within

the EvoScript, the algorithm will aim to optimize them to the desired time

of solving the game.

We provide a default parameterization of the EA based on typical scenarios.

Even mutation and crossover operations are provided, by default, thanks to

the “EvoParam” interface. However, you can change, for example:

• the crossover rate;

• how individuals are chosen for the crossover;

• crossover operation;

EvoParam<int> minimumHp = 2;

if(HP > minimumHp)

// do something

.

24

• mutation rate and range;

• how individuals are chosen for the mutation;

• mutation operation;

• the type of selection (from one generation to another);

• elitism in the selection.

If you want to read more on this topic, please refer to our documentation pages

at https://www.grail.com.pl/doc.html.

9.5. Grail Integration with External Algorithms

In some cases, it is important to enable integration of legacy AI-controlled agent

code with new tools. This type of combination will work when we have some

complex, scripted behaviors, but want the scripted behaviors to be chosen

wisely, based on the observed state of the world. For example, suppose we have

two behaviors: attacking an opponent and picking up a first aid kit.

The developer wants the attack to proceed as follows each time: The agent

positions itself using some heuristics independent of the decision-making

process.

1. If the agent has found a good position, it goes to it; if not, it goes back

to point 1.

2. The agent turns towards the opponent and takes aim.

3. The agent waits a predefined amount of time (to simulate reaction time).

4. The agent shoots.

This rigidly scripted sequence of behaviors with branching depending on simple

conditions is ideal for the use of behavior trees – we have simple rules and

a predictable situation, and the creator has full control over all parameters and

conditions.

But the choice of whether we should attack the opponent (and which one) or go

get the first aid kit (and which one) is so complex that it will be much better

to model it with the Utility-Based AI. Thus, we get the following flow:

1. Utility-Based AI selects the most promising behavior.

2. The behavior tree associated with the behavior is triggered.

3. Utility-Based AI selects the next behavior and (if it can) abandons

the previous one.

And so on.

Grail makes use of very abstract data structures, and because of that, integrating

Grail with external algorithms such as behavior trees, finite state machines, etc.

is quite simple. All that the user needs to do is to encapsulate their chosen

algorithm in Grail’s Behavior. To this end, they need to provide 3 things:

Grail makes use of very abstract data

structures, and because of that,

integrating Grail with external

algorithms such as behavior trees,

finite state machines, etc. is quite

simple.

https://www.grail.com.pl/doc.html

.

25

1. A way of executing the Behavior defined by methods Start, Update, and

Finish. For example, when using behavior trees, this should consist

of actually running a behavior tree.

2. A way of knowing whether the Behavior has finished, defined by method

IsFinished. For example, by checking if the behavior tree has finished

its calculations.

3. A way of knowing whether the Behavior can be executed in the current

game state, defined by method IsLegal.

Having done that, a user can effortlessly embed their chosen algorithms

in Grail reasoners.

Of course, it is entirely possible to do that in reverse and embed Grail’s

reasoners in external algorithms, but that does not differ from the usual way

of using Grail. Users need to simply declare a reasoner inside a scope

they wish to use it in and update it as often as needed.

.

26

9.6. What Type of Games Would Benefit Most From Which

Grail Techniques?

Simulated Games AI

The technique is suitable for 4X,
real-time strategy (RTS), real-time
tactics (RTT), turn-based strategy
(TBS), turn-based tactics (TBT),
economic, simulation, and tower
defense games, as well as any
games containing such elements.

Planner AI

Especially good for games where
the world can be modeled in the
form of requirements for action
and action results. Originally used
in F.E.A.R and Killzone 2, so proven
in games of this type. Planners are
good for aspects such as queuing
game production, crafting,
planning the order of visiting
checkpoints, logic puzzles, and
turn-based games with a large
number of actions to be
performed during one turn.

Utility-Based AI

Suitable for any game but
especially good for action games,
survival shooters, first-person
shooters (FPS), and role-playing
games (RPG) where you need
to make a quick decision. This
technique has also been
successfully applied to games such
as The Sims for modeling the
characters’ preferences. It is a very
good method for making strategic
decisions when the quality of the
decision is influenced by relatively
few factors and the relationship
between the factor and
the usefulness of the decision
can be modeled. If dependencies
are more complex (and, for
example, require simulation), there
are better methods, e.g. Simulated
Games AI.

Evolutionary Optimizable Scripts

This technique has two uses. The
first is simply scripted behavior, so
it will work well in any game where
AI is written as a specific heuristic.
The second is to optimize selected
parameters that ultimately
influence the AI performance
if only a method of its evaluation
is provided. Grail’s evolutionary
algorithm is a meta-optimizer used
as a parameter tuning tool.

.

27

10. Grail Roadmap

How to prevent situations that break immersion? Some of the aspects above

have been tackled before by AI, while some are only now receiving attention.

Here is what we have planned for Grail’s future development.

1. Development of an effective method of measuring the realism of NPCs’

behavior (based on the Turing Test). Our goal is to measure the realism

of NPCs in the AI production loop, therefore this test needs to be relatively

fast and accessible.

2. Enable NPCs to infer and dynamically create missing knowledge in the game

with incomplete and uncertain information. The goal of such reasoning is

to enable game playing at a sufficiently strong level while maintaining

the limitations on the information that human players have. Inference

techniques will be developed in terms of the game techniques used to make

decisions in the game. Therefore:

a) inference techniques must produce the knowledge needed to make

a decision

b) inference techniques can produce input data for decision-making or

can be integrated with the decision-making algorithms themselves

.

28

(e.g. extend the Utility-Based AI technique to include uncertain and

incomplete information)

3. Representing the beliefs of the bot, especially as inferred by the

above-mentioned inference techniques. A particular problem is the method

of maintaining and revalidating these beliefs in a dynamically changing

environment.

11. You Are in a Good Company: the History of Applying Advanced AI

in Video Games

Considering what’s ahead, let’s reflect on the accomplishments of the game

development industry with respect to applying advanced AI to date. In summary:

the game development industry has been using rather simple methods to create

AI. Despite enormous progress in scientific AI/ML, gamedev has not adopted

the latest achievements. There is a distinctive gap between scientific AI

and gamedev AI for the purpose of decision-making, and perception and

memory modeling.

The AI techniques that are present in solutions that are on the market and

available to game developers are currently insufficient to fulfill our goal in full.

Plausible reasons for this rather slow adoption rate of more advanced

AI methods are beliefs that limit progress, such as:

• “Advanced AI is hard to design…”

• “... and to control.”

• “It can be overpowered (in an inhuman way).”

• “Advanced AI can produce unpredictable behaviors.”

• “The methods are inefficient (too hard for a dedicated computational

budget).”

• “Difficult to integrate with current methods.”

We developed Grail with these aspects in mind, to address the possible issues

upfront.

.

29

.

30

12. Games as a Sandbox for Developing Cutting-Edge Decision-Making

AI

Games have been serving as a medium in Artificial Intelligence research since

its inception in the time of pioneers such as Alan Turing, Arthur Samuel, and

John von Neumann. In 1959, Samuel wrote a paper titled “Checkers playing

program,” and since then Game AI has been used to measure the progress of

Artificial Intelligence.

Games are often chosen in research as a test environment for algorithms,

techniques, or sophisticated approaches not necessarily aimed at playing games

as the ultimate goal. Game environments can test aspects such as

decision-making, goal-based optimization, search and control, reasoning –

including spatial and temporal reasoning, knowledge representation, dealing

with hidden information, and uncertainty.

Chess was named the “drosophila
of AI’’ because it was similarly popular
in AI research as is this type of fruit fly
in biological research.
Go was named the “Grand Challenge of
AI’’ because it has been identified as
a game that is hard to tackle through
algorithms and would require a more
human-like AI approach.
Arimaa is a game specifically designed
in 2003 to be (1) extremely difficult for
AI players and (2) playable with a chess
set.

.

31

Historically, research in AI in games has been synonymous with the goal

of achieving optimal play in combinatorial games. These can be formally

represented by game trees of various state-space and action-space complexities.

Therefore, lots of algorithms proposed for game AI are search-based algorithms

such as min-max, alpha-beta pruning, or MTD(f). Popular combinatorial games

used for research are: Chess, Checkers, Backgammon, Shogi, Hex, Othello,

Gomoku, Havanaah, Arimaa, Lines of Actions, Chinese Checkers, Amazons,

Stratego, Scrabble, Bridge, and Limit Poker.

Much of the research in game AI revolves around competitions, which are hosted

periodically, e.g. annually. Competitions are efficient ways of measuring the

progress of AI in a given area. Moreover, they provide an objective benchmark

for comparison of approaches5, e.g. General Game Playing, General Video Game

Playing, Arimaa Challenge, Starcraft AI, microRTS, Hearthstone AI, or VizDoom.

Currently, research in decision-making AI has many niches and flavors and

is carried out in all kinds of games, e.g. combinatorial games, serious games,

modern video games, old video games (e.g. Atari, NES). The most iconic, cutting-

edge approaches to AI in games seem to be attributed to the works of DeepMind

and OpenAI research laboratories.

Firstly, DeepMind has provided us with increasingly sophisticated evolutions

of AlphaGo in the form of AlphaGoZero (mastering Go without initial knowledge),

AlphaZero (adds Chess and Shogi to games it mastered) and MuZero (adds Atari

games). These programs can learn how to play games extremely well only through

self-play, i.e. without any expert games to learn from. Secondly, DeepMind

proposes AlphaStar. It is, In simple words, an AlphaZero-inspired approach to

Starcraft II. It was the first computer program to master such a complex video

game6.

OpenAI has given us OpenAI Five, which is a super-strong AI player for Dota 2.

In 2019, OpenAI Five became the first computer agent to defeat the world

champions in an esports game7. Both AlphaStar and OpenAI Five are similar from

a technological point of view. They combine simulated self-play with deep

reinforcement learning, a set of neural networks for various aspects of the game,

and the powerful computing machines they run on.

At QED Software Team, we are a mix of researchers and professionals with

hands-on experience in the industry. We have a strong record of participating

in research in game AI as well, which is reflected in many publications. Just to

name a few, research in Hearthstone AI and participation in the International

Hearthstone AI Competition, research in the field of general game playing,

game-based data mining, and scientific-level approaches to specific games.

31

References

1. QED Software, Tactical Troops bots reason with Utility-Based AI and MCTS
combined, upcoming paper, [online] Available at: https://qed.pl/publications/
[Accessed 8 June 2021] GO BACK

2. Rabin S., 2017, Game AI Pro 3, CRC Press, [online] Available at:
http://www.gameaipro.com/ [Accessed 8 June 2021] GO BACK

3. Gamasutra.com. 2021. Are Behavior Trees a Thing of the Past? [online] Available at:
https://www.gamasutra.com/blogs/JakobRasmussen/20160427/271188/Are_Beh
avior_Trees_a_Thing_of_the_Past.php [Accessed 8 June 2021] GO BACK

4. Grail.com.pl. 2021. Simulated Games - defining a game in 10 steps: Grail
Documentation. [online] Available at:
https://grail.com.pl/documentation/documentation/0.1/manual/simulated_game/s
teps.html [Accessed 8 June 2021] GO BACK

5. Świechowski, M., 2020, Game AI Competitions: Motivation for the Imitation Game-
Playing Competition, [online] Available at: https://annals-
csis.org/Volume_21/drp/pdf/126.pdf GO BACK

6. Deepmind. 2021. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II.
[online] Available at: https://deepmind.com/blog/article/alphastar-mastering-real-
time-strategy-game-starcraft-ii [Accessed 8 June 2021] GO BACK

7. OpenAI. 2021. OpenAI Five. [online] Available at: https://openai.com/projects/five/
[Accessed 8 June 2021] GO BACK

https://qed.pl/publications/
http://www.gameaipro.com/
https://www.gamasutra.com/blogs/JakobRasmussen/20160427/271188/Are_Behavior_Trees_a_Thing_of_the_Past.php
https://www.gamasutra.com/blogs/JakobRasmussen/20160427/271188/Are_Behavior_Trees_a_Thing_of_the_Past.php
https://grail.com.pl/documentation/documentation/0.1/manual/simulated_game/steps.html
https://grail.com.pl/documentation/documentation/0.1/manual/simulated_game/steps.html
https://annals-csis.org/Volume_21/drp/pdf/126.pdf
https://annals-csis.org/Volume_21/drp/pdf/126.pdf
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://openai.com/projects/five/

	Introduction
	1. What Do We Mean by Truly Advanced AI in Games?
	2. How Our System Works
	3. Advanced Intelligent Behaviors in Grail – a Paradigm Shift
	4. Modularity, Communication and Hierarchy – Practical Aspects of Development
	4.1. Communication & Hierarchy

	5. How Can Grail Help Game Developers?
	6. How Can Grail Help Game Development Management?
	7. Why Do We Need Truly Advanced AI in Games?
	8. What Makes Games Built with Grail Better Value for Players?
	9. Core Technical Contribution
	9.1.1. Grail Implementation
	9.2.1. Grail Implementation
	9.3.1. Grail Implementation
	9.3.2. Performance Considerations
	9.4.1. Grail Implementation

	10. Grail Roadmap
	11. You Are in a Good Company: the History of Applying Advanced AI in Video Games
	12. Games as a Sandbox for Developing Cutting-Edge Decision-Making AI
	References
	Grail Whitepaper - referencje.pdf
	References

